368 research outputs found

    Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the BES system on MAST

    Full text link
    The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.Comment: 28 pages, 15 figures, submitted to PPC

    Electromagnetic VDE and Disruption Analysis in the SMART Tokamak

    Get PDF
    The SMall aspect ratio tokamak (SMART) is a new spherical device, that is, currently being constructed at the University of Seville. The operation of SMART will cover three phases reaching a maximum plasma current ( IPI_{P} ) of 400 kA, a toroidal magnetic field ( BTB_{T} ) of 1 T, and a pulse length of 500 ms. Such operating conditions present notable challenges to the design and verification of SMARTs structural integrity during normal and off-normal operations. In particular, vertical displacement events (VDEs) and disruptions (Boozer, 2012) are most important as they can cause severe damage to the components directly exposed to the plasma due to the significant electromagnetic (EM) and thermal loads delivered over ms timescales. As a consequence, a detailed evaluation of the EM loads during plasma disruptions is mandatory for the correct dimensioning of the machine, in particular the vacuum vessel. The EM loads are mainly produced by: the poloidal flux variation during the thermal and current quench, halo currents (Boozer, 2013) that flow into the vacuum vessel and interacts with the toroidal magnetic field; and toroidal flux variation during the thermal and current quench. We present, here, the EM and structural analysis performed for the design of SMART. The modeling has been carried out by combining equilibrium scenarios obtained through the FIESTA code (Cunningham, 2013), estimating VDE and disruption time-scales by comparing other machines (Chen et al. 2015), (Hender et al. 2007), and (Bachmann et al. 2011) and computing EM forces through a finite element model (FEM) taking into account the effects of both eddy and halo currents (Roccella et al. 2008), (Titus et al. 2011), and (Ortwein et al. 2020). Finally, the structural assessment of the vacuum vessel is performed in order to verify its integrity during normal and off-normal events in phase 3.10.13039/501100000780-Fondo Europeo de Desarollo Regional (FEDER) through the European Commission (Grant Number: IE17-5670 and US-15570

    Magnetic equilibrium design for the SMART tokamak

    Get PDF
    The SMall Aspect Ratio Tokamak (SMART) device is a new compact (plasma major radius R≥0.40 m, minor radius a≥0.20 m, aspect ratio A≥1.7) spherical tokamak, currently in development at the University of Seville. The SMART device has been designed to achieve a magnetic field at the plasma center of up to B=1.0 T with plasma currents up to I=500 kA and a pulse length up to τ=500 ms. A wide range of plasma shaping configurations are envisaged, including triangularities between −0.50≤δ≤0.50 and elongations of κ≤2.25. Control of plasma shaping is achieved through four axially variable poloidal field coils (PF), and four fixed divertor (Div) coils, nominally allowing operation in lower-single null, upper-single null and double-null configurations. This work examines phase 2 of the SMART device, presenting a baseline reference equilibrium and two highly-shaped triangular equilibria. The relevant PF and Div coil current waveforms are also presented. Equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.The authors would like to thank the VEST team for their technical and engineering support. This work received funding from the Fondo Europeo de Desarollo Regional (FEDER) by the European Commission under grant agreement numbers IE17-5670 and US-15570. In addition support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 805162) is gratefully acknowledged

    Mechanical and electromagnetic design of the vacuum vessel of the SMART tokamak

    Get PDF
    The SMall Aspect Ratio Tokamak (SMART) is a new spherical device that is currently being designed at the University of Seville. SMART is a compact machine with a plasma major radius (R) greater than 0.4 m, plasma minor radius (a) greater than 0.2 m, an aspect ratio (A) over than 1.7 and an elongation (k) of more than 2. It will be equipped with 4 poloidal field coils, 4 divertor field coils, 12 toroidal field coils and a central solenoid. The heating system comprises of a Neutral Beam Injector (NBI) of 600 kW and an Electron Cyclotron Resonance Heating (ECRH) of 6 kW for pre-ionization. SMART has been designed for a plasma current (I) of 500 kA, a toroidal magnetic field (B) of 1 T and a pulse length of 500 ms preserving the compactness of the machine. The free boundary equilibrium solver code FIESTA [1] coupled to the linear time independent, rigid plasma model RZIP [2] has been used to calculate the target equilibria taking into account the physics goals, the required plasma parameters, vacuum vessel structures and power supply requirements. We present here the final design of the SMART vacuum vessel together with the Finite Element Model (FEM) analysis carried out to ensure that the tokamak vessel provides high quality vacuum and plasma performance withstanding the electromagnetic j×B loads caused by the interaction between the eddy currents induced in the vessel itself and the surrounding magnetic fields. A parametric model has been set up for the topological optimization of the vessel where the thickness of the wall has been locally adapted to the expected forces. An overview of the new machine is presented here.This work received funding from the Fondo Europeo de Desarollo Regional (FEDER) by the European Commission under grant agreement numbers IE17-5670 and US-15570. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF
    corecore